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IV—On the Absorption of Polar Crystals in the Infra-Red
By M. BLACKMAN, Beit Scientific Research Fellow, Imperial College, South Kensington

(Communicated by S. Crarman, F.R.S.—Received 23 January, 1936)

A cubical crystal of the NaCl type should, according to the lattice theory,?
possess only one frequency which would respond to infra-red light, this vibration
being caused by the motion of the rigid lattice of positive ions against the rigid
lattice of negative ions. We should, therefore, expect a single maximum in the
absorption and in the reflexion ; this presupposes an harmonic motion of the
particles of the lattice.

This main maximum is a well-known feature of the properties of ionic crystals
in the infra-red, but the work of CzerNy and his collaborators{ has shown that,
besides this, there are subsidiary maxima both in absorption and in reflexion ;
furthermore, the representation of the optical constants, in particular of the
absorption coeflicient (K) by means of a dispersion formula with a damping constant
as suggested by DRUDE, broke down completely on the short wave-length side of
the maximum.

The theoretical explanation of the above results was given by Born and Brack-
MAN§ in an investigation of the damping of the main vibration. It was possible
to show, following the work of PauLi|| and Peierss,q that the damping was due to
the anharmonic character of the vibrations, which resulted in the main vibration
being coupled to certain combinations between other normal vibrations. The main
results can easily be seen if we refer to the one-dimensional case. Taking a linear
chain consisting alternatively of N particles of mass m (charge + ¢) and N of mass
M (charge — ¢), we find the frequency of the normal vibrations to be given by
the expression
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v = v, (2)7} {1 + <1 — (—M%Sim —Tl%cy}%, (fig. 1.)

where £ varies from O to N. v, is the maximum frequency and is given by

V02:2“<n12+'1\l/[>a

where « is the constant of the restoring force between neighbouring particles.

A B

1 Born, ¢ Atom Theorie des festen Zustandes,” Berlin (1923).

1 Czerny, ‘ Z. Physik,’ vol. 65, p. 600 (1930). Czerny and Barnes, ¢ Z. Physik,’ vol. 75, p. 732
(1932). R. BowrLiNG Barnes ¢ Z. Physik,” vol. 75, p. 732 (1932).

§ Born and Brackman, ‘ Z. Physik,” vol. 82, p. 551 (1933). Brackman, ‘ Z. Physik,” vol. 86,
p- 421 (1933), quoted hereafter as I.

|| PauLs, € Verh. deuts. phys. Ges.” vol. 6, p. 10 (1925).

€ ¢ Ann. Physik,” vol. 3, p. 1055 (1929).
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104 M. BLACKMAN

Now the rule that governs the coupling is that v, is coupled only to combinations
between vibrations having the same value of £ but belonging to different branches.
It is then easy to see that the summation tones extend from v = v, to v = v, + v,
(where v, is the maximum frequency in the acoustical branch and v, the lowest in
the optical branch), and the difference tones from v = v, tov = v; — v,. Further-
more, the density of the normal vibrations is large in the neighbourhood of v, and
vy, hence the combination vibrations v, -+ v,, v; — v, are associated with a large
number of frequencies.

Now if we send in light of frequency v then the main vibration responds, and since
this is coupled to the combination vibrations, those for which the frequency is v
will be able to take up energy. Since the spectrum of the combination tones extends
only up to v = v; 4+ v, any frequency higher than this cannot be absorbed (if we
confine ourselves to the first anharmonic term in the displacement) ; hence for these
frequencies the crystal behaves as if it were undamped. 'The same happens for any
frequency smaller than v = v, — v,. Furthermore, since the points v; 4 v, and
v; — v, in the frequency scale are associated with a relatively large number of
normal vibrations, we should expect maxima of the absorption (and reflexion) at
these frequencies.

This is, roughly speaking, what one does find from the calculation of the one-
dimensional case ; in the two- and three-dimensional case the effects are more
complicated but the same general principles apply. It is perhaps as well to state
which of the general results quoted apply to all crystals and which are of special
nature.

The first point concerns the fall of the absorption on the short wave-length side
of the maximum. This effect depends only on the fact that the vibrational spectrum
of a crystal has a finite upper limit, and that the spectrum of the combination tones
has a similar upper limit. Hence the effect should appear in all polar crystals.

The existence of an absorption continuum is a result of the existence of a more
or less continuous vibrational spectrum, and is, as such, a general effect. The
maxima in this continuum due to the splitting up of the frequency branches can
be taken to be practically as general an effect, though in particular cases they
might not be noticeable. The size of the continuum may vary greatly from crystal
to crystal. As an example, we may note the fine structure of the 6-8u. reflexion
maximum found by PryrLeErT for CaCO;.  Besides the two maxima usually attri-
buted to the vibrations of the carbonate ion, there are two other maxima at present
unexplained. These lie on each side of one vibration, and their distances from the
vibrations correspond to wave-lengths varying from about 200y to 500u. Now it
can hardly be doubted that these maxima come from the combination of the CO,
lattice vibrations with lattice vibrations. Since there is a large number of fre-
quency branches it is quite possible that we have here a superposition of several
maxima of varying intensity.

t ¢ Phys. Rev.’, vol. 33, p. 948 (1929).
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ABSORPTION OF POLAR CRYSTALS 105

In all such casest where we have an inner vibration in a crystal, there will be a
narrow band attached to it in the absorption and reflexion spectrum with possibly
additional maxima.

1—If we consider a linear chain containing alternately two types of particles of
mass m, M and charge + ¢, — ¢, and take only the effect of neighbours on each
other, then the total energy of the lattice may be written as

+

ol

H =

4

m .
{Tj u2n2 —I_ u2n+1 + (u2n+l uZn)2 —}* % (uZn«I - uzn)z

w2

+ % (Uanpr — Uz,)® — % (g1 — Us,)® — €E (p, — uZm!—l)} .. (L1)

The last two terms are the anharmonic terms, and the electrical term due to an
electro-magnetic wave of amplitude E falling on the lattice ; u,, represents the
displacement of the 2n™ particle.

If we transform the energy] to normal coordinates by means of transformation

Yy = == 2 N 2"< gk ’Y)_ S >
Us \/N \/m cos oy + o 1n o )
1 1r__zk " \ 2 N
Uspr1 == \—/_N 3 N & < \/M sin «;, -} \/nﬁ Cos a / )
where
2\/mM 2k

&= E*—ka e =M%y, and tan 2a;, = M — COs N

the harmonic part of the energy has now the usual form with frequencies given by
the formula in the introduction. The anharmonic part of the energy becomes

HA = "‘B——— > { /(:}3: Ei&iln + D;c%rzz & + Dklm ENim + Dksz)kV)zV)m}, (1-3)
6v/N ktitm=0, +25

and the electrical part

H; = \/NeE (gvo + VloBo)a
where
/ o1 wik
A — <cos @ . sin o sin oy N\ B, — (Sino; oS a N>
e VM)’ ‘ <Vm VM boo(14)
Din = (AAA, — ARMARAX), D), = 3 (B,AA, — B* A% A%)
D}, = 3 (ABB, — A*B*B*,), D{), = (BBB, — B*B*B*,)

1 (f. also E. TELLER “° Handbuch der Chemischen Physik,” vol. 9, part 11, Leipzig (1934).
1 Only an outline of the one-dimensional theory is given here, for details see I.

P 2
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106 M. BLACKMAN

As can be seen from (1-4), the electric field affects only the vibration of higher
frequency ; (7, is the translation).

A rather special type of perturbation theory is necessary to solve the problem.
This consists in transforming the normal coordinates by means of the transformation

. (1) . (1) .
p= O € g €% = X g e
jem a1

(1.5)

——— e ——
.

0 = 2 dye™'
J

The ¢;, d,; are now taken as new canonical variables, and the corresponding impulses

are defined by the relation
ﬁkj = Wy C_g—j, etc.

It will be noted that the ¢, dj; are constant in zero approximation (when we have

only harmonic vibrations).
In the first approximation they become variable and can be calculated from the

equations

) 1 oH 1 oV
cﬁ:'(l)a :'q)a ’ (f¢0)
Wy;? OCp—j W~ OCyj (1.6)
, e e .

P 1 oV aE, i etc

% b o 1wy o )

05 0—j 0
where in the new coordinates
o) (1) (1)
V (ady) = E_ 3 A e e

64/ N kilim=0, +2n

) oD 4ol 4 2)
~+ D) ey €y dyyrr € h G om0
;o) ) 2)
+ D) ey dy e € 7w
;0 02 4 3)
+ Di) diidy d, o ¢ h 0 n

We now write down the expressions for &, dj, ¢y, noting that D # 0 only if
¢ — 2. We furthermore separate in the expression for ¢; those terms containing

¢, ; we then put
0 1
6 = ¢ + o

R ¢ )

. (1)
Coj = ;€00

+ Peieris, ¢ Ann. Physik,” vol. 3, p. 1055 (1929).
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ABSORPTION OF POLAR CRYSTALS 107

where the ¢f} are of course small. These expressions are substituted in ¢; and then
the integration is performed. This leads to

ol gD 3
’ (wplpprrtwp/ —wg )t
A — B S DoY) o), L i 1
i (D)
« lJJ

7 " @y + wlf + wf)

1
( f—lj' +w§] )—w} Nt —1

a ( P + wi) — wp)

<B’=7‘)’ﬁ> L. .. (18)

+ 2 Dy

; (whL) 1 (2) (1)
z(wl-, +w g Ve 1
+ X7 2DC% e df%. - (1)] " ](2) ] M
(W) + wily — wp)
; —wibyy
glwte—ufhe 1 }

T (w+ w? — wd)

It will be noted that in the last line j* occurs only in ;.
The expression for ¢,; is given by

+ 3 2D, diy

’
. (1) 42 (1) aF. oy,
Cy == p—u)‘z 2DQ ¢y d_po 6 i TR0 e 20 O A TR .. (L9)
wy; i

Substituting (1.8), etc. and (1.5) we obtain the expression for v;,
, E
0 (W — w) — ') — *foZ%T?' N ¢ B (1))
0j

There are, of course, two such equations, and in order to find the electric moment
we must add the v values.
The damping factor can be written in the form i I'; where

sin® 75 '\
r, — B 5 N o2 sin (w - wf 4+ wj) ¢
P 0 [EN o) (2)
wy i 8y (w + wip) + w)
sin? i @
+ Nc(o)zsln(w+—w,—{—w)t. . . (1.11)
wg Y (w 4w + wip)

In (1-9) we have to awerage+ over all values of the independent phases of the
Ckj dk]

The method of finding the average value of the complex normal coordinates is
discussed in Appendix I. The final value of T is given by}

o 168%T (M +m)
Mmw} 2mMa/mM

(1.12)

-1 PEIERLS, loc. cit. .
1 Detailed calculations are given in I. The three possibilities given by £ + & + &' = 0, 4 2=
have also been taken into account here ; in I only the first condition was used.
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108 M. BLACKMAN

When we work out the value for the electric moment we find this to be

cE
— w? — 2Tw,

p= o (1.18)
There are several points to be noted here. Firstly, this differs from the result
given in the previous paper, where w replaced w, in the damping factor.

Secondly, it differs from the usual form given by DRrRUDE’s theory of dispersion,
as can be seen from the fact that

¢ Tw
an:(w§~w2)2~?—-4I‘2w3' T € 8 1)

Here o, replaces » in the numerator and denominator. It is perhaps instructive
to note that one can deduce this difference from the general principles underlying
the theory. The fact that I' is not zero means that we have combination vibrations
which are capable of absorbing energy ; hence we must conclude that the absorption
coefficient cannot tend to zero as long as I' remains finite. On the old dispersion
theory k tends to zero as  tends to zero, which does not fit in with the conclusions
we have just reached. The above formula shows that £ tends to a constant
value as o tends to zero, which is in agreement with the general conclusions. It
may, however, be noted that in general I' will become zero before we come to
very long waves.

2—Two-DiMENSIONAL THEORY

a—We shall start here with a consideration of a simple two-dimensional case,
namely, a lattice having a square cell and containing one particle per cell. The
general features of the vibrational spectrum have already been worked out.

We consider that particles at a distance ¢ and av/2 can act on one another
(a being the lattice constant). The binding constants in the two cases are « and y
respectively, and the mass of each particle is denoted by M. The displacements
of the particle (/, m) in the two directions is given by %, v;,.

The total energy for harmonic vibrations is given by

2N 3
H = lm2=0 {% ulzm + "‘21\/;[‘ Izm} + % {(ulm — Upam )2 + (vlm - vlm—l—1>2}
|
+ %{(ulm + Upp — Uyt mer — Uppa m+1)2 + (ulm + Upp — Uprim—1 — U1 m—l)zr . (2.1)

The transformation to normal coordinates can be made by using the expressions

+N i
— (Ir4-ms) .
Upn == a’ % N (Efo‘ COS o,y — 7, SIN OC"J) 1
rs=—N , (2.2)
+N i
= (Ir-Fms) .
Uy = a’ ZN eN (E, sin o, + 7, COS @) J
5=

1 BLAckMAN, ¢ Proc. Roy. Soc.,” A, vol. 148, p. 365 (1935) ; quoted hereafter as II.
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ABSORPTION OF POLAR CRYSTALS 109

where @’ is a normalization constant. Also &, =£*_,_ and v, =7*_,_, ; and the
usual condition of periodicity replaces the boundary conditions. The angles «,, are
defined by the relation
sin 2 sin %
tan 2, =2 N"N L (23
o uis s
COS = — COS ==

N N

T~

N ad

k —

Fie. 1—Frequency diagram for a one-dimensional lattice <

e

Substituting in (2.1) we obtain the energy expression in the usual form with fre-
quencies given by the relations

wl = 4n™, =a (1 —cos ¢; + 1 — cos ¢,) + 4y (1 — cos ¢, cos ¢,)
+ («® (cos ¢y — cOs ¢y)% + 16y2 sin? ¢, sin? ¢,)t, . (2.4)

where s

¢1:§> ¢2=N-

These equations are exactly the same as have already been derived in a previous
paper from the equation of motion of the particles.

The knowledge of the form of the transformation to normal coordinates is essential
if we wish to find out whether a particular combination of normal vibrations is allowed
or forbidden in infra-red absorption, as will be shown below. The transformation
is also of use if we wish to discuss the form of the normal vibrations of our lattice
in special cases (¢f. Appendix II).

As can be seen from (2.4), we have two frequency surfaces; actually the ¢’s
are not continuous variables, but we may consider them to be so, and we are then
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110 M. BLACKMAN

dealing with the frequency surface carrying the points corresponding to the normal
vibrations. As regards the spectrum, we may repeat that the main features are
the maxima of the density of the normal vibrations which occur when the frequency
is in the region v, V..

b—1If we now assume that the particles in a lattice contain alternately positive
and negative charges, we are strictly speaking incorrect in saying that we have one
particle per cell. If, however, we assume that the binding forces are exactly the
same for each particle, the frequency surfaces will be the same as in the case of
§2(a).

There are two questions which are of interest in this case. The first is whether
the maxima of the density of the vibrations mentioned above affect the absorption ;
the second question concerns the possibility of combination between vibrations
belonging to different frequency branches.

It we examine the electric moment we find that there are two normal vibrations
£xn and 1y which alone are associated with a change of the electric moment. These
have the same frequency and are exactly similar vibrations.

The form of the calculation is exactly similar to the one-dimensional case, and
in view of the complicated nature of the damping constant and the number of
constants occurring in it, it has been thought better to discuss its properties rather
that its actual form.

If we consider anharmonic terms in the energy of the form

Hy=2% (ulm — Up1,)°, €tC.,
then expressed in the normal coordinates we have again the form
HA == Z {Dr(slr)’s'r"s" ar: glr’s’ Ellv”s” + Dg*)’s’r"s“ E.:rs alr’s’ 7) ”r”s"

r4r'+r’=0+£2N
3 ’ 1 4 ’ "
+ Dfsr)’s’r”s” E,ﬂ) vy N st + Dfxr)’s’r”s” Nrs ™ v N r”:”}'

s+s'+s"=0+2N

where
DY =A_ A, A, C,.
D®=A_A,.B,. C,,.
3 ) L L . (2'5)
D® =A, B, B, C,,
D% =B, B, B, C,,.
and
A, = cos a,, B, =sina«,,
] ’ 7’
ST i T in =
C,, — Zz{SIn N TSR + sin 7 } .

It will be noted that D@, # 0 only if r = 1. This would mean that in the
expression for ayyT only D, would appear ; a consideration of the calculation

. . . . . L)
t In carrying through the calculation we use again the transformation %, = X 1(1”]‘8"””] !, etc.
j==
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ABSORPTION OF POLAR CRYSTALS 111

of §1 will then show that in this case the combination between the two frequency
branches is forbidden.

As regards the combination between the (Or) (=0) frequencies in the same fre-
quency branch, a little consideration shows that the controlling factor is D{), o,
and as C,,. is zero for r = 0 or r = N, it is clear that these combination tones are
forbidden.

The combination between the neighbouring frequencies is, of course, not forbidden
though weak ; if the density of the vibrations is sufficient there is a possibility that
the maximum due to combinations will appear as a maximum of the damping
factor and of the absorption.

The considerations can now be extended by taking the next type of anharmonic
term

p> (ulm + U — Uppimpr — Uz+1m+1)3-

These give again terms of the form (2.4) where

D,(Z) - A/j:- A/;"_.\" Alr_"s" C,nr’x’r"s”
D,(3) - A,;L- Alr_'.\" Alr_"’s" Clm"s’r”:”
D,(4) - A/r: Al;’—s’ A,;’s” C,r:r’:’r”.\'”

1
D’( ) = A,Z A,;"—.\" Alj'-’x" Clr:r's’r":” ]

s .. (286)

with
A’ = (cosa,, + sina,,)

, Y, X3 ) _TF. . 1 ’ N . l'C_ 1" 77
Cm,s,,,,s,,_Zz{smN(r—l—s) —i—smN(r +5)~|—smN(r +s )}

From these coeflicients we can see that D&} no is zero ; on the other hand, DY, is
not zero, because although sin ¢y = 0 cos ¢y # 0.

This means that combinations between branches will contribute to the optical
absorption, as can be seen by forming the expression for ayy;, with the new term
in the expression for the energy. In this case the combination between the (Or)
(m0) frequencies is again forbidden because Do is zero.

Such being the case one might not expect any prominent features in the absorp-
tion of the two-dimensional lattice under discussion (except the fall on the short
wave side of the maximum). It is, however, quite probable that the (Ox) (=0)
combinations might, in spite of the above restriction, be sufficiently intense to give
maxima of absorption.

The general condition for combinations is given by the relations

r+7r +7" =04 2N
s+ + 5" =04 2N.

VOL. CCXXXVI.—A Q
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112 M. BLACKMAN

In this case one of the frequencies is (¢,¢5) = (=nn) ; hence the vibration (¢, ¢,)
can combine only with the vibrations defined by ( (= — ¢4), (v — ¢3) ).
The above condition shows that vibrations in the lower part of any branch

<¢1 < %, by < g> can combine only with vibrations in the upper part of the branch.

This might be taken to mean that in the more general case of different masses
combination is allowed only between optical and acoustical branches and not
between branches of the same type. This is not so, except in the limit, because
the translational symmetry is different in the general case.

3—Two-DimensioNAL LaTTicE witH Two ParTIicLES PER CELL

The treatment of the next case where we have two types of particles calls for
some consideration. In the case where we have only one type of particle we can
use either a square cell, as has been done in the previous section (fig. 24), or a
parallelogram (fig. 24), one particle being located in the corner of the cell in each
case. The square cell is much more convenient to use because of its symmetry.

It is natural to try to use a similar cell in the more complicated cases, especially
where the spectrum is under consideration, as this has been worked out in the case
of one particle for such a square cell. A little consideration of the lattice for two
types of particles (fig. 2¢) shows, however, that if a square cell is to be used, four

o o T-m---o—-"---gr ° ] o

(a) (4) (©) (@)

Fie. 2—Different types of lattice cells.

particles have to be allowed in the unit, which has obvious disadvantages. If we
wish to use the simple cell containing two particles we must use a parallelogram as
shown in the diagram fig. 2d. From this we can in the usual way express the dis-
placement of any particle in terms of the components along the two independent
directions defined by the axes. We call these us, Vo, %oriim V2r1, Where m runs
from 1 to N and / from 1 to N, the odd values of / referring to particles of mass
m, the even values to particles of mass M. We can then write down the equation
of motion in terms of the binding forces and expressing the solution in the form

(8.1)

Uy = Uy ei(wt+21(/)1+m¢2) }
m
b

Vgt = 0, ei(wt+21c]>‘+m¢z)
m 0
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ABSORPTION OF POLAR CRYSTALS 113

where ¢, = 21%1 , g = 51%3 and a; and @, are integers running from 1 to N.

—mw2~+A(¢1¢2) C(¢1¢2) D(€[’1> 0
0 —mw?®+ B (did, E(¢:¢2 D (¢, — ¢,
mw? + B (¢,4,) ($142) (¢1— b2) ~0 (32
D(¢1) 0 “Mw2+A(¢1¢2) C(S’Sl‘ﬁz)
E(‘f’l‘ﬁz) D(‘f’1 _952) 0 *Mw2+B(¢1¢z)
A (by ¢o) = 20 + 2¢" (1 — cos (26, — 6,) ) 5 C(d1¢2) =7 V2 (cos (¢, — ¢5) — cos ¢3)
B (¢1 ¢2) = 20 - 2y’ (1 — COS ¢3) 5 E (¢ ¢2) =« \/—2- (cos (¢1 - ¢2) — COS ?51)
D (</>1) = — 20 COS ¢, ;

The force constants here are defined in a similar way to those in the case of §2a.
o is identical in the two cases, and v/ = 2y.

One can, however, choose an equation which is rather more suitable for our
purpose than the one above. This consists in principle in substituting for the
phases ¢, ¢, the phases ¢,, {5, which can be defined with respect to the orthogonal
axes. It is easy to see that if ¢, {, are the phase differences between neighbouring
particles in the two directions for a particular normal vibration, then we have the
relations

by + 4y = ¢,
by = ¢,
Substituting for ¢ in equation (3.2) and multiplying out, we obtain the relation

X,2Y,2 — 4y"2sin? ¢, sin? ¢, (X;2 4 Y,%) — X, Y, (4a? cos® ¢, + 4a? cos? ¢,)
+ 16a* cos? ¢, cos? ¢, -+ 16y"* sin* ¢, sin* ¢, — 32y %2 sin? ¢, sin? ¢, cos ¢, cos Y,

where 0= {Z‘} <% . ... (3.3)

2

: =0, (34)
where . X, = — mw? 4 2« + 2¢" (1 — cos ¢, cos ¢5) ;
' Y, = — Mw? + 20 + 2y’ (1 — cos §; cos §,).
This can also be expressed in the form of a determinant :
—Muw? 42« 2v'sin ¢, sin ¢, —2a cos Y, 0
+2y" (1—cos ¢; cos ¥s,) . :
2y’ sin ¢, sin §, —Muw? 42« 0 — 20 cos Py
, +2y" (1—cos ¢, cos {,) = 0.
—2x cos Yy : 0 —Muw?+ 2« 20" sin Y, sin P, (3.5)
+2¢" (1—cos ¢, cos §s,)
0 — 20 cos Yy 2y sin §q sin ¢, —Muw? 42«
~+2y (1—cos §; cos §,)

2
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114 M. BLACKMAN

This determinant can also be obtained, as was done in the first instance by
Dehlinger,T by writing the equation of motion for the two particles of the unit cell
in terms of their components along the orthogonal axes and substituting a periodic
solution involving the ¢; ¢, defined above. It will be noted that the limits of ¢,
are — 2n and + 2r instead of 0 and 2= (¢f. 3.3).

We shall use equation (3.4) and (3.5) in the further discussion.

There is another point to be noted here. Firstly, the v’ forces act between like
particles only. Hence we might just as well have chosen two kinds of forces y';,v’s,
and the only difference in the determinant (8.5) would be that we should have v,
in the rows containing mw? and y’, in those containing Mw?. The distinction
between the two types of particles lies, therefore, not only in the masses but also in
the forces.

Taking (3.4) and putting m = M, i.e., X = Y, we note that the equation may
be written in the form

X* — X2 (402 cos? §; + 4a? cos? ¢, + 82 sin? ¢, sin? ¢,)
- (4a2 cos ¢, cos Y, — 4y’2sin? ¢, sin? ¢,)2 =0, . (3.6)

which may be put into the form
{X2 — 2a(cos ¢; + cos $y) + 4y'2sin? ¢, sin? ¢, + 4a? cos P cos o}
AX2 - 20 (cos Yy + cos §p) - 4y'2sin? ¢, sin? §p + 4a? cos ¢4 cos o} = 0. (3.7)

Each of these two solutions represents the two wave surfaces in the case of equal
masses, and the variables in the one case are related to those in the other case by
the transformation

> — ¢y
bo > 7 — Uy,

This is shown in fig. 42 and 4.7 Only the outlines are given. For the form of the
contour lines we refer to a previous paper.§

We deal here only with the range 0 = ¢y, ¢, = n. Actually ¢, extends from
— 2n to + 2= and ¢, from 0 to 2, but since we can put ¢'; = 2r — ¢, 'y = ¢,
or ¢’y = 2x — Yy, §’; = ¢; in equation (3.5) without changing this in any way, we
can confine ourselves to the range 0 = ¢ = 2 ; the frequency surfaces for the range
0 = ¢ = 2= can be obtained by reflexion in the planes ¢, ==, ¢, = =.

We shall now proceed to discuss qualitatively how the frequency surfaces split
up. Since the roots of (8.4) cannot be expressed in a simple form we fall back on
a discussion of certain cross-sections, from which we can obtain the desired informa-
tion. Certain general results are of use in this connexion. For y'; =¢’, and

T ¢ Phys. Z.,” vol. 15, p. 275 (1914).
1 In all these diagrams the frequency is plotted as a function of ¢; and {..
§ BLACKMAN, loc. cit.
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ABSORPTION OF POLAR CRYSTALS 115

m = M we must go over into the case shown in figs. 42 and b and for y = 0 and
m # M we have the quasi one-dimensional form (¢f. II), which is known for all
values of m/M. In the case of m <{ M we know, for instance, that the surfaces
are widely separated (optical from acoustical) and that the optical branches are
nearly monochromatic. Furthermore, it is clear that the splitting of the frequency
branches takes place along certain curves in the two-dimensional case instead of
at points.

We consider first the cross-sections ¢; =0, ¢, ==x. Since the determinant is
symmetrical in ¢, ¢,, we have identical results for ¢; = x, $, =0 ; similar results
hold also for ¢, = =, ¢, = x, etc.

We have in the above case,

X:2Y;:2 — X, Y, (4o? 4 42 cos? x) + 16t cos 2x =0,
where
X, = — mw?* + 2o 4+ 2¢" (1 — cos x) }

Y, = — Mw? = 20 4+ 2y’ (1 — cos x)

Here we can, of course, find the explicit solutions. The figs. 3 show the cross-
sections for the cases m/M = 1, 1/1-1 and 1/3.

The values of the two middle frequencies <O %} which will be used later, are given
by
wy; = (20 + 2¢y'/m)}
wy = (20 + 2v//M)}

A very interesting fact is the asymmetry which is apparent in fig. 3¢, i. The
extreme points of the middle curves are not given by (3.9) as we might have
expected, but lie on opposite sides of the <O-g> frequencies. For all practical appli-

cations this shift is, however, so small that (3.9) may be used.

\
\

The second set of cross-sections, which we shall use, is given by (¢, §,) = <

NI A

These are defined by the equations
X,2Y;2 —4acos?x X, Y; — 4y"2 (X% 4 Y,2) sin? x 4 16y"4sindx = 0

where

X, = — mw? + 2 + 2,
Y, = — Mw? + 2 + 2/

T

It will be noted that (3.10) is symmetrical about x = 5 Starting with m = M we
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have the form shown in fig. 3a, ii. The (

\

— (20/m)} and @'y = ', = (2 + 4y'/m)*.

0rx

2

When we have different masses we have the values

w'y = (2/M),
W'y = (20 4 4¢'/M),

Considering {3.11) we see that of the <

T T
272
w', always the highest value, whatever values we choose for m, M, «, and y (« and y

w'y = (20/m)?
w', = (20 + 4¢'/m)}|

1-0
I
08
+ 06
o
2
>
0-4
02+ 0-2
| | 1 L
0 40 SOp_>120 160

]
0 40 80

1
—j20

160

=1; L=0-10.
o

i, 0 ¢ cross-section ;

. T .

i, 5 ¢ cross-section ;

iii, ¢, * — ¢ cross-sec-
tion v.

> frequencies are w; and w, (3.9)
with w, = w, and ws = (2y’'/m)}, w, = (4o + 4v’[/m)* for the lowest and highest

frequencies respectively.  The four < 25—9 frequencies are given by w’'; =w',

(3.11)

The frequencies w; and w, have a more complicated form, and will be omitted as
we do not need them here.

> frequencies w’; has always the lowest,
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118 M. BLACKMAN

must, of course, be positive). On the other hand, w’'y, < w’, if m/M is sufficiently
near to unity. As soon as we allow m/M to vary, we see that w’y > w'; if

142 M L. (312
o m

An idea of what this means can be obtained from the diagrams (figs. 3). (All

these figures are drawn to scale.)

It will be noticed that the frequency w’; belongs in fig. 36 (where m/M = 1) to
an optical branch, but in the case of m/M < 1 (fig. 3¢), it belongs to an acoustical
branch. The reverse is the case for the frequency w’,.

The third set of cross-sections are defined by the relations ¢, = = — x, ¢, = «7

which is a diagonal section. The equation for the curves becomes

X;2Y2 — X, Y, 8a?cos? x — 4y'? (X2 4 Y,?) sin? x
— 32y'% a2 sin* ¥ cos® x 4 16at cost x + 16y*sin* x =0, . . (3.13)

where X, = —mw? 4+ 2a + 2¢'(1 + cos? x)
Y, = — Mw? + 20 + 2y'(1 + cos? x).

In the case of m = M, i.e., X = Y (3.13) reduces to
[X,? — (42 cos? x + 4y'2 sint x)]2 = 0,

i.e., a complete square. This is indicated in fig. 3a, ili. The separation of the
curves in the general case is now similar to the previous case in that we again have
an interchange of vibrations between two frequency branches. This takes place

at the <72—C %)point as before.

With the help of the above cross-sections, the form of the wave surfaces as indicated
in fig. 4¢, d, ¢, f, will be understood. Only the outlines have been drawn and the
contours omitted. The case has been taken where the surfaces are well separated.
Other cases can be visualized with the help of the cross-sections.

As indicated above, the wave surfaces touch again at the <3—2r —721:) points when
12 M
« m

The interchange which occurs here is a rather curious feature. Since this inter-
change of vibrations between the optical and acoustical branches is confined to the

(-g- %) point, it is unlikely to have special significance or practical applications.

T These are not the same as the (x, ) cross-sections.
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ABSORPTION OF POLAR CRYSTALS 119

4—The first question of importance with regard to the vibrational spectrum is
the number and the position of the maxima of the density of the vibrations. It
has been shown (¢f. II) that even for one particle per cell we have maxima of the
density near some of the points characterized by the values (Ox), (n =), for (1 ¢,).
For all such values as is shown by (3.4) the frequency surfaces touch ; there are

always four solutions falling into two parts. It can be shown that 'a%v— and a%’— are

1 2
always zero at these points, and hence we have zero gradient at all points where
(b1 ¥2) = (0 =), (= 0), (= =) in this case also.

(@) © (e)
(b) (d) £)

Fic. 4—a, b, frequency branches — = 1.

m
M
¢, d, acoustical branches
¢, f, optical branches

variables §; ¢, along the other two axes.

} 1?71 # 1. Frequency is plotted along the vertical lines. The

It is necessary to emphasize here that the fact that oo 0, means merely

0¢y 0y
that the surface runs “ flat ” at a certain point, and not necessarily that the density
of the normal vibrations is a maximum at that point.} It may as often indicate a
minimum. Nevertheless, these points form a very useful starting point for the
consideration of where the maxima are likely to be, and are certainly associated
with maxima in some cases, e.g., the maximum in the lower frequency branch in
the case of one particle per cell discussed in § 2.

T I am greatly indebted to Dr. R. PEierLs for some helpful discussions on this point.

VOL. CCXXXVI.—A. R
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120 M. BLACKMAN

For the two-dimensional lattice with two particles per cell (§3), there are new
points of zero gradient as compared with the simpler case (§2). One set is

certainly the <g g) points, as is clear from a study of the cross-sections. ~ The splitting

of the frequency branches produces, however, another set of such points. These

lie near two of the ( 0, g) frequencies w, = \/ 20 4 2y" Wy = \/ %le\;lﬁi which fall
\ m

together when m = M. To show this we note that the tangent to the surface in

the (0, ¢,) plane is certainly parallel to the (¢, ¢,) plane at the points where the

frequencies have their extreme values. These are not the KO g-) points (¢f. fig. 3b, 1),

but lie near these in all practical cases. Furthermore, the tangent to the surface
at right angles to the (0 ¢,) plane is always zero. Hence at these points both
2 and 2 are zero.
0y 0Py

We have in this case four sets of points where the gradient is zero as compared
with two when the particles are identical.

The number and approximate position of the actual maxima of the density of
the normal vibrations may be determined by a study of the frequency surfaces.
From figs. 3 and 4 it will be seen that in the acoustical branches we have one

/
maximum in each case, near (0 =) in the lower branch and near (O 9 in the upper

/

. T 71‘
branch ; and no maximum at <

22

branches. In the lower branch the maximum will lie near <O E>, in the upper

». Similar results are obtained for the optical

2
branch near (= =). The (g g) points are hence of no great importance.
We have, therefore, four maxima in all, two being due to the splitting of the
frequency branches. ‘

5—The general selection rules governing the infra-red absorption are again
given by the relations
b+ ¢y + ¢ =0, + 2m. <¢1:%7¢2:%>
by + 4’ + ¢ =0, & 2m,,

where one of these vibrations is the optical vibration (= =). Hence combination
of vibrations belonging to different optical and acoustical branches is allowed.
Maxima in the spectrum of the combination tones will be produced by combination
of the two middle maxima. The (0 =) maxima will probably yield only weak
maxima if at all. We should therefore expect two summation tones and two
difference tones to appear in the absorption, the former lying on the short-wave,
the latter on the long-wave side of the main line.
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6—THREE-DIMENSIONAL THEORY

In the three-dimensional problem we consider a cubical lattice of the NaCl type,
i.e., containing two different types of particles. For reasons given above, the cell
containing the smallest number of particles is preferable, and this is not a cubical
cel. One can however deduce, as was indicated in § 2, a six-rowed determinant
containing the frequency as a function of certain phases (¢; ¢, ¢3) which are

A A

A

< referred to the normal axes. The equation, which is the same as was found by
— Dehlinger (loc. cit.) except that it has included the forces -between particles at a
;5 o distance aV/3 (where a is the lattice constant).
~
O oM +A (s dub) B (s ) C (4ub) D (s o) C (i) D (s )
25 5 B (%; 442443) —mw? -+ A (411; %%) D (4114»‘2; 4‘3) C (H’quiz) D (411413; 4‘2) c (411‘4143)
I O C (442‘4141) D (4’24’15 \213) —Muw?+A (%; 4134‘1) B (qr‘z; !l)sklh) (@ (%%) D (%%; 4»1)
=w D (‘p2¢13 "l)fi) c (412 LIJI) B (‘Lz; %4}1) —mw?4+A <‘-I)2§ %%) D (%%; ‘-IJl) c (%%)
— C (‘paq’l) D (‘4’34)12 ‘pz) c (413412) D (4134)2; 441) —Muw?24A (‘Ls; %4»1) B (‘l’a; 4’24)1)
5(23 D ($sds; o) C (s¢n) D (sa; ) C (4sye) B (§s; $athn) —mw?+A (§s; $ay)
Ic =0
ou . 7here ) ' )
85 0 A (15 Yos) = 200 + 83 + 4y (2 — cos P, cos P, — cos Py cosPy); C (¢ §s) = 4y sin Y, sin ¢,
%E B (415 o) = — 20 cos §; — 83 cos P, cos Y, cos Py D ($ie; §s) = 83sin §ysindpcos . . . (6.1)
o=

The definitions of « and v are as before (§2 (a)).
The frequencies which are of interest for our purpose are, firstly, the (g g 72—c> group,
given by
wy = (200 4 83 4 4y/m)’~f} '
tw
(20 + 83 + 4y/M)}
wg = (2o + 8 + 16y/m)}

w, = (20 + 85 + 16y/M)%,

Wy

Of the <0 g g-> group four are of interest,

A \
I

A A

—

;5 o ws = (20 + 8 + 12y/m)}  wy = (2« + 85 + 12y/M)*

2 = w; = (20 + 85 + 4vy/m)? ws = (20 + 85 + 4y/M)E . . . (6-2)
E 8 and of the <0 0 72—5\ group, two :

& ’

wy = (2 + 85 + 8y/m)}
Wy = (20 + 85 + 8y/M)L.

e = A/ (20 + 8) (++ .1.\1_4>

Furthermore,
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122 M. BLACKMAN

It will be noticed that of the six < > frequencies two fall together when the

222
masses are different. An examination of the normal vibrations in this case shows
that the two vibrations are identical as long as we have cubical symmetry
(Appendix III).

If we take different values of y for the two ions, the frequencies (6.1) are changed
only so far as y,(y,) replaces vy in the expressions containing m (M). It will be seen
that even if the masses are made equal, we still have a splitting in the frequency
branches in this case.

A full discussion of the features of the spectrum would necessitate a careful
examination of the cross-sections in ¢, ¢, ¢ space. This is, however, not essential
for the purposes of this paper, as we can obtain sufficient information as to main
features of the spectrum without a detailed study.

We have three optical and three acoustical branches, which will in general not
cut one another, though they touch at certain points (e.g., the (00 =) points). The

“ interchange ” mentioned in a previous section (§4) occurs again, the vibrations

concerned being ©,, o, and g ; belonging to the <2 2;) and <0 5 2> group

respectively.
The gradient will be zero at all points where (¢; ¢, ¢3) = (0= =) (00 =) (x = =)

d(ErT ; ints lyi 00Z) (0= i
\ 35 2> There will also be other points lying near the (0 0 2> (O 53) frequencies

given in (6.2), as has been shown in the analogous two-dimensional case.

The maxima of the density may be divided into three types, as can be seen by a
consideration of the quasi one-dimensional case (y = 0, 8 = 0). There are, firstly,
those maxima which depend on y and § only, and which disappear when y = 0,
5 = 0; these should lie in the neighbourhood of the (0 0 ©) {= = 0) points in the
acoustical branches ; there should be at least one prominent maximum of this type.
The second kind of maxima is due to the splitting of the frequency branches into
_m_ya) M

‘ M+tm?® M-+m
points in the limity = 0, 3 = 0. Since the spectrum is split into three parts in the
general case, it seems reasonable to suppose that each maximum is split at the most
into three smaller maxima ; it is highly probable that there will be less than this
number. These maxima will lie in the region bounded by the extreme values of the
<O 0 %> <0 % Tﬁt) < g %9 frequencies. Itwill beseen that the <-2- 5 §> frequencies form the
extreme points of the region in the case of a Born-v. KArMAN lattice (¢f. (6.2)).
The third type of maxima forms the maximum at the point v, (the optical frequency)
in the limit. These lie in a region bounded by the extreme values of the (00 =)
(07 =) (== =) points ; they all lie in the optical branches.

The above classification is a very rough one, but it will be noticed that we can
fix a region in which the maxima belonging to the various types will lie, and this
does give useful results when applied to the optical absorption.

acoustical and optical, and forms the maxima at the v,
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The selection rules are

‘Pll‘f'q"z “f“l"a -—:'Oa + 2n < __Tr
‘-p,z + q’uz + ‘L'Hz =0, =% 2m
s+ s 4 = , =+ 2n

where one of the vibrations is the optical frequency (== =). This means that
combination is allowed between all the frequency branches. Combination between
the (0 0 =) (= = 0) frequencies is, however, again forbidden by symmetry, as in the
two-dimensional case ; it is probable, though not certain, that the maxima which
lie near these points will be of less importance for our work than the maxima due
to the splitting of the frequency branches, because in the latter case there is no
restriction whatsoever.

7—DiscussioN

a—~Prominent Maxima—The one-dimensional theory gave one secondary maximum
on the short-wave side of the main line 2, at a distance X,/ v/2, and one on the long-
wave side. The first three-dimensional theory developed for small values of y and
3 gave again one maximum on the short-wave side, but modified the v/2 law by a
factor containing the binding constants. As will be shown below, this is a good
approximation in the case of KCl. The general theory, as was shown in §6, yields
a large number of such maxima.

In order to show that these do fit at least some of the maxima found experimentally,
we can tabulate the values deduced from theoretical considerations. We have
three constants «, v, 3, which we can determine from the two elastic constants ¢;4, ¢»
and from the known value of the optical frequency v, measured experimentally by
CzERNY and BARNES.

The relations which we use are the following :

€110 = o + 43 + 4y
(}1261: ZY +48

VOZ—Z%\/(Za+83)<%—}~ﬁ>.

From these we obtain the data given in Tables I and II. The experimental results
are also given.

TaBrLes I
NaCl KCl
Elastic constants ¢y = 4770 ¢;, = 1204 ¢y = 3750 ¢;5 = 685
Kg/mm? cqq = 1320. ¢4 = 650
Absorption maxima
Roin 61-1u 70-6p
Minding constants o = 8465 & = 616 a = 9340 3 = 343
abs. units = 558 v = 313


http://rsta.royalsocietypublishing.org/

JA '\

/ y

A

a
{ )\
L 2

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

yA \
V. \
AL A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

124 M. BLACKMAN

From these values we can now write down the different frequencies we want,
and also the combination frequencies.

Tasre II
Frequencies
(Z‘ T T Summation tones Difference tones Observed
2°2°2
vy =0-924v, A =35-0u; Af = 36-6u; A= 222p; Ay = 333 40p
Vo = 0818\11 o . . 4+ . . —_ . - 50“‘
NaCl v, = 0-174dy, A5 =386u; Af =391y Ay o= 382p; A7 = 562u ~200p:

vy =0:658v, A =41-4p; Af =46-7u; A5 = 698u; Ay = 825u >200p

vy =0:803v, A =45-5p; A =456y ; Ar = 763u; Ay = 1122y, 47y
vy = 0-763v, A =46:3p; Ay = 46-9y.; Ay = 1350p. ; Ay = 1760p 60u.

KCl
vo=0-74lv, U A e R 200,
S 0710w N =ATGu A =495u5 05 = 220005 A7 = 3300 ot

N

We have chosen the <§%%) frequencies, as the actual frequencies should lie
within the limits given in the table. It should be noted that the first short-wave
maximum is represented very well by the theoretical values, especially when we
note that the actual absorption band is several p in width. The second maximum
is, however, not represented very well, the agreement being better for NaCl than for
KCl, where there is actually little sign of there being two bands.

All these frequencies lie very close to one another and to the /2 value, thus
confirming the method adopted in the previous paper (¢f. I). The calculated results
for KCI can be deduced without any calculation if one notes that for small values
of y and 3 the whole spectrum bends to a quasi one-dimensional case. Hence for
moderately small mass differences the summation tones must all tend to the /2
value. On applying the same idea to the difference tones we arrive at the conclusion
that they must lie very far in the infra-red, in accordance with the one-dimensional
formula ; this is also what we find in the table.

Experimentally, however, we find something quite different for KCl. The in-
vestigations show a pronounced anomaly in the absorption on the long-wave side
of the main line at about 200y, which is at first sight rather unexpected. One
might think of taking into account a factor omitted in the original form of the
theory, namely the possibility of different values of y discussed in §6, as this would
give an additional splitting of the frequency branches. This argument could be
expected to hold in a case where y or § were fairly large, but not where they were
already small. In order to go into the numerical side of the question we need some
new assumption since there is now a new constant ; we puty, = Oy, =y, t.e.,, we
take the extreme case to see whether we can obtain any kind of agreement. The
calculations show that for NaCl we can shift the whole band so as to run from 40u
to 50p. on the short-wave side, and from 100y upwards on the long-wave side. In
the case of KCIl we still obtain a narrow band at 48y, and the long-wave band
starts at about 500¢.. \
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Hence, although for NaCl we can, with the help of the two values of vy, obtain
better agreement with the experimental results, we are left in the case of KCIl with
the same unexplained maxima lying close to the main line.

One possibility of explaining these results is that the combination between the
(00 =) (= = 0) vibrations is sufficiently intense to cause a large maximum. These
frequencies are of two types, those which contain « and those which do not. The
former tend to the optical frequency and the latter to zero, as y and & tend to zero.
It is hence clear that in the limiting case we have, from combination between such
frequencies, two maxima lying on each side of the main maximum, and tending
towards this frequency as « and 3 tend to zero. One might therefore think that
this is the explanation of the behaviour of KCIl and NaCl in the region near the
main maximum. '

To test the conclusion we may calculate the various frequencies involved from
(6.1), assuming if necessary different values of y. The results are, however, rather
inconclusive. The four combination frequencies obtained for KCI are 1-73 v,,
1:97v,, 1:07v¢, 0-92v,.

We must, however, point out that a quantitative calculation of these frequencies
can be made with the help of the investigations of BorN and THoMPsON,T where
the actual forces between ions are introduced. It is possible that the connexion
between the frequencies and the elastic constants is not quite as rigid as is required
by the theory of the model, and hence that the splitting of the v/2 levels in the case
of KCl may be comparable with that of NaCl. In this case, the KCI maxima would
be explained in the same way as those of NaCl.

b—Smaller Maxima—Several other maxima have been reported by MEnTzL.f He
finds, for instance, that the 40p maximum of NaCl is double. In view of the large
number of maxima which may form this band, it will be obvious that theoretically
a number of fluctuations in the band is extremely likely. The theory is, however,
not sufficiently advanced to make an attempt at a detailed analysis worth while
at present. Other maxima given by MENTZL are at about 30y for NaCl and for
KI ; now both these maxima lie above the harmonic of the main vibration ; it is
possible to explain these maxima only if the higher order terms in the energy are
taken into account. A quantitative discussion is hardly feasible at present in view
of the small number of these maxima recorded.

c—Absorption in the Far Infra-Red—We shall confine ourselves mainly to the question
of the difference tones. As outlined above, it seems that as long as the frequency
branches are separate, we have a lower limit to the difference vibrations and hence
after a certain point the absorption should go to zero. Of course, the terms of higher
order will again modify this conclusion, as will the fact that combination between
similar branches is allowed ; but it seems justifiable to expect an appreciable drop

T ¢ Proc. Roy. Soc.,” A, vol. 147, p. 594 (1935).
1 ¢ Z. Physik,” vol. 88, p. 178 (1934).
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126 M. BLACKMAN

on the absorption after a certain value of the frequency. At present the systematic
measurements of CzerNy and his school have reached 300p. but no further, and
the other measurements at isolated points are too few to allow definite conclusions
to be drawn.

APPENDIX I

Note on the Use of Complex Normal Coordinates in the One-Dimensional Lattice Theory

(a) We consider the case dealt with in §2 where we have a linear chain of particles
of mass m and M.
The transformation to normal coordinates is given by :

N

1 +3 ik

Uy, = m k _2__1\_: eN" (B cos ag - 7y sin o)
2
u 1 pX %(2"“)( £, sin a; - n; COS o)
2n+1 e — Sk k k k
+ ’\/NM bl
where «, is given by the relation tan 20, = %\m%cosg——gcand B, = E*_, np = ¥,

Putting§,=a, +ib; Ex=a—1ib; m=ca+id; nyo=¢—1id;

we have
N
1 Z Thon —riky, . ks, Iy
Uy, = th’ki( NTE e N E) cos o Fsinay (eN m,4e N )
N
2
= ’\/IN_ﬂ; kzo {<ak cos E%Z — b, sinENE. 2n> 2 cos o
| k ok .
-+ <ck cos EN 2n — d, sin :CN- 2n> 2 sin ock}

and a similar expression for u,, ;.

Now if we can express the energy as a sum of terms containing £_£, and £_Z,,
we can obviously express this equally well as the sum of terms containing a}, @},
b2, b2, etc. We notice that £ runs from 0 to N/2. Actually, we have for every
value of the frequency two normal vibrations of phase £ and 2N — £ ; the exceptions
are the translation and the maximum frequency respectively.

It will be seen that we have obtained in this way exactly the right number of
normal vibrations, viz., 2N.

This is interesting because in the two- and three-dimensional cases this resolution
leads usually to double the number of normal vibrations.
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(b) We can further extend the use of these real normal coordinates. In the
transformation which is used in § 1

L= G 60" gy 6%,
we can put £, = a, + b, etc., where
a, = A, cos (@it + ¢) b, = B, cos (it + Br).
Hence we can express ¢;;in terms of the above constants and find

¢ = ¥ {Aycose, — Bysin B, + ¢ (Aysine, 4 B, cos B,)}
61 = 3 {A,cose, + Bysin B, — 2 (A, sine, — B, cos 8,)}

and

G €%y = % (Aff -+ B/‘:)

These vibrations are necessary for a discussion of the mean energy of the normal
coordinates. .

The kinetic energy of a normal vibration in the notation used will be &% hence
we have

ZE:%AﬁwZ:%‘andAzzg .
k

Hence |¢u|? = 1 (A} + BY) = 5~

APPENDIX II

A Note on the Form of the Normal Vibrations of a Two-Dimensional Lattice

The form of the normal vibrations is of special interest in certain cases, viz., those

/ \

) for the phases (¢, ¢,).

characterized by the values (On) (nn) ( —g %

The transformation to normal coordinates has been found to be

) (Ir4-ns)

Uy, = a4 ) eN (zrs COS o,y — Ty Sin O(.”)
s

L)
Z}I —a 2 eﬁ(lr-iﬂn.r)
2

s

(€, sina,, + 71, cos a,,),

where a is a normalization constant and £, = 2% __ etc.

Also
inlt—rsinzf
4y NN ‘o mr ws
tan 2e, = — = — (\(]}1 =N Py = N>'

Tr
COS == — COS —

N N

VOL. CCXXXVI.—A . S
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When (44, 4,) = (07), a, —0 and

[ S imm w0 __ ¢/ i/
Upy — gﬁ oN € Uy = a No €

T !

O = 0'ox €™, v = 1'no €7

Hence these two normal vibrations take the form shown 1n figs. 5¢ and 5. It will
be clear from the figures that in 54 only the y force comes into play, not the « force;
whereas in 56 both forces take part in the motion. Hence we should expect the
frequency of the vibration to depend on y only in case (¢) and on « andy in case (4).
This is found to be so, ¢f. §2.

(a) (b) (©)

(o) \o o \ ) lo \ "o/ \ o
~ e @ NN @ a, @ ™o
(d) @)

Fic. 5—Normal vibrations, a and & ($,0,) = (0n) 5 ¢ ({§s) = (nw) ; dand e (y,) == k%”—é)

An examination of the frequency equation shows that «, = 0 also for the (==).
The amplitudes of the normal vibrations are
u;-,]—;;— —_ E,/NN eirr(l#m), Z)Z;r — 7)INN ein(/-ivm).
The form of the vibration shown infig. 5¢ indicates that the y force is not influenced,
and that the frequency should depend on « only. The two normal vibrations are of
course identical in the case under consideration.

he (27 vi i e o =
For the <2 2) vibrations we find tan 2«,, = o0 and «,, i

We may then write

1 s LA .
’ I 2 22 2=(1+m)
= o (uf 4 ) B0
22 V 2 E
, 1 /[T T T m)
— 35 . 23 gnlim
g .1\55 o ‘0 (ulm Z)lm €2
27 V2N /
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The relation of the amplitudes ,, v, can be given quite generally as

’
l—@"—z _ _Z.t__ gi((l—l')‘lll+(Hl—m’)\lx3)
’
Oim 4
where

wo_ 4y sin ¢, sin §, _
v o (cos Yy — cos ;) + V/(cos gy — cos §,)2 + 16y sin? ¢, sin? §,

T ™

22 — 22
Hence u?? = + 02
The two normal vibrations are shown in figs. 54 and e.

APPENDIX TII

/ \

On the (g % %) Vibrations of a Simple Cubical Crystal.

We confine ourselves for simplicity to the case where we have only one type of
particle. In that case the equation of motion (when the phases are as above) can
be written down in terms of the amplitudes in the form

(— mw? + 200 + 83 + 8y) u’ + 4y o' + 4y w =20
4y’ u + (— mw? 4 20 + 83 + 8y) v 4y w =0
4’ u' - 4y v + (— mw? + 20 + 8 + 8y) w’ = 0.
If we now put

L1

u~vé(£+n+t)

z)’:w:*\-}.a(i*— )

w’::———l—,r.(li——i_’,)

NG

we obtain the equations
AZ - BY] _l" Bc = Oa
Af + By — B =0,
where
A = — mw? + 20 + 85 + 16y B = — mw? + 204 4 8 -+ 4y.

For the existence of a solution it is necessary that A or B is zero ; it is obvious
that both A and B are zero since the one condition follows from the other. Hence

we have the three normal frequencies (two of which are equal) from the conditions
A=0,B=0.
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It is also clear that &n¢ are the amplitudes of the normal vibrations. These can
be put in the form

Zz%g(u’-{—v’—l—w’)
= _\é? (W + v — 2w
¢ = %2_ (W +w — 20).

Since v, { are obtained from each other by interchanging v* and w’, it is clear that
they are exactly similar vibrations.

APPENDIX 1V
A Note on the Relation of the Reflexion and Absorption Maxima

(a) The reflexion and absorption maxima can be correlated under certain circum-
stances. The secondary maxima on the short-wave side of the main maximum,
fall usually in a region where the refractive index is very small. Assuming for the
moment that we have no absorption, we have the well-known relation

722 == n02 ‘jr‘ __________9 .
vZ ey 2
For
TL:O, —‘—"‘“‘“—“_2 p 2::”"' n()z
A
or
9 p
sz = V02 — "‘"""‘2 .
n

In general the secondary maxima have a frequency smaller than v;, so that when
there is absorption they lie in the region in which 7 is small. The reflexion coefli-
cient may be written in the form

R—1-— __ﬁﬁ__... —1 A
(1 4+n)2 + k2 1+ k2
for small values of n.

If no subsidiary effects were present the refractive index would fall steadily in
this region to minimum value and then increase. The damping factor will cause
a small maximum to appear and hence there will be two minima. Since 7.,
corresponds to R, here, we have two maxima of the reflexion with a minimum
value corresponding to 7.

We,_ cannot measure z directly so we turn to a consideration of the transmission.
We should expect a minimum of transmission (maximum of absorption) to lie

near n,,,. Hence the minimum value of the transmission and the reflexion should
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lie at practically the same point in the frequency scale. The above considerations
hold only in the 1/2 region.

TaBrLE 1
Reflexion minimum Transmission minimum
NaCl 40-5p ~ 41u
KCl 45-5u ~ 47u
LiF ~18u 18-20p.

(b) The variation of the reflexion of a crystal with the thickness of the material
has already been investigated theoretically.t The data of Czerny for NaCl was
used in conjunction with the theoretical formula, and it was found that as the
thickness of the material became small compared with the wave-length, the maximum
of reflexion moved to longer wave-lengths and the secondary maxima disappeared
entirely. Hence no information as to the character of these secondary maxima
could be obtained from an investigation of the reflexion of thin films, in contrast
to the importance of the experiments on transmission.

Note added 14 Fanuary, 1936—After the completion of the above work, an interesting
and important paper on the same topic by SErrz, BARNES, and BrITTAIN appeared
in the ° Physical Review,’ 15 October. The points where the energy (or frequency)
surface has extreme values are found with the help of group theory. It is assumed
that all these will be maxima in the energy spectrum, and that the combinations
will be corresponding maxima (subject to certain selection rules) in the infra-red
spectrum. As has been discussed above, it is extremely unlikely that the maxima
of the density of the normal vibrations will always coincide with the extreme points
of the energy or frequency spectrum, and hence a much closer analysis is needed.
Furthermore, the maxima of the frequency spectrum are usually fairly broad, and
it is difficult to see how these could be used to explain the extremely sharp maxima
found in the infra-red absorption spectrum of Mg0.

SUMMARY

The features of the spectrum of a two-dimensional square lattice containing two
particles per cell—especially the splitting of the frequency branches into acoustical
and optical branches—are studied ; the corresponding features of the three-
dimensional case are also obtained. This information is applied to a consideration
of the properties of the infra-red spectrum of polar crystals. Good agreement with
experiment is obtained for NaCl, but the results for KCl are not so satisfactory.
Various possibilities of explaining the discrepancy are discussed.

1 Brackman, © Phil. Mag.,” vol. 18, p. 262 (1934).
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